
ì

Software & Systems Design

i’m watch
the first Android

Smartwatch
Nicola La Gloria, Ph.D.

Field Application Engineer

•  Introduction

•  Hardware Design

•  OS firmware design

•  Enterprise (quick introduction)

•  Q&A

Agenda

Introduction:
what is

”The ultimate way to connect to your
mobile device”…

o  Android based OS

o  Manages services notifications

o  It’s a Bluetooth handset device (HFP, PBAP)

o  Features Apps as any smartphone

o  Plays multimedia contents

o  Appealing design and quality of manufacture

o  User Apps through SDK.

08/07/2011 — Brand i’m watch — Logo i’m droid

Proposta “B”

Features:

Introduction:
Challenges

o  Low Memory, 64MB RAM for System and Applications

o  Reduced battery consumption

o  Reduced space for components placement

o  Curved capacitive touch technology

o  Bluetooth integration for handset features

o  MIPI display technology integration

o  Applications GUI design and Accessibility

o  Bluetooth tethering (internet connection)

Tethering

Calls

Introduction:
The Concept

Collect Data
from Services

I’m
enterprise

HFP/PBAP

Internet Connection

•  i.Mx233 @ 450MHz CPU

•  64MB LPDDR (MT46H32M16LFBF-6L_:C)

•  Bluetooth

•  Microphone

•  Speaker

•  4 GB eMMC

Hardware Design:
Hardware Specifications

•  Jack Stereo Audio Out

•  USB OTG

•  450mAh Battery

•  1.54” 240x240 Display (MIPI)

•  Curve Capacitive Touch screen

•  One stand-by button

Hardware Design:
Components placement

Assembly Bottom

Assembly Top Speaker
RAM

Audio Jack / USB

Mipi

BT

Antenna

CPU

eMMC

Hardware Design:
Dimensions

Hardware Design:
Dimensions

Hardware Design:
Mechanical

Rendering

The Operating System

is the i’m watch customized Android OS

ü Donut 1.6 (lower memory requirement)
ü  Bug fixes
ü  Back-ports from Gingerbread and Froyo
ü Custom native code
ü  Expose native methods to APIs (through JNI)

08/07/2011 — Brand i’m watch — Logo i’m droid

Proposta “A”

DROID
08/07/2011 — Brand i’m watch — Logo i’m droid

Proposta “B”

i’m Droid Firmware Design:
the kernel

An official Android Kernel for FSL i.MX233 was not available.

Android manual kernel porting for i.MX28:
ü  Official Android Kernel 2.6.35
ü  FSL patches for generic Linux i.IMX platform (including i.MX233 patches)
ü  Manual conflict resolution

Most efficient:
ü  “Git merge” between Android Kernel 2.6.35 and FSL i.MX Kernel 2.6.35
ü  Time effective, less conflicts
ü  No manual patches
ü  Full kernel history and easy update management

 i’m Droid Firmware Design:
CPU scaling and standby

o  262 MHz

o  360 MHz

o  390 MHz

o  454 MHz

Due to strict energy saving policy, the system has to be scalable in
terms of CPU speed.

To limit battery consumption the user-space Kernel Frequency CPU
Governor is used:

o  CPU Governor Conservative

o  CPU Governor OnDemand

They scale the CPU frequencies according to the needs. OnDemand governor
switches to governor increases/decrease frequency immediately, while the
Conservative step by step.

i’m Droid Firmware Design:
Preliminary Power Consumption Tests

o  Removing/deactivating components

(Ethernet, Serial, Memory, USB)

o  Varying the CPU Frequency

o  Varying the Display Backlight

o  Standby/Idle states

Consumption tests have been done to evaluate the energy saving
in the i.MX233 EVK on different set-up:

As detailed in the specifications of i.MX233 processor, FSL Linux BSP
does not support suspend-to-RAM mode. To send properly in low
power mode when the screen timeout expires, Android has been
forced to call the standby mode instead of the suspend-to-RAM.

i’m Droid Firmware Design:
The Touch Interface: TSlib

To calibrate the touchscreen the TSlib calibration suite has been integrated into Android.
They include:

•  Porting TSlib for Android (binary build);

•  Android’s framework integration;

•  Application for calibration (TSCalibration for testing).

ü  TSlib is an abstraction layer for touchscreen panel events, as well as a filter stack for
the manipulation of those events.

ü  It was created by Russell King, of arm.linux.org.uk
ü  TSlib is generally used on embedded devices to provide a common user-space

interface to touchscreen functionality

i’m Droid Firmware Design:
Preliminary Consumption Tests

CPU MHz Backlight Status mA
all 0 Standby 25
454 50 Idle 116
454 100 Idle 164
392 100 Idle 157
392 0 Idle 93
360 100 Idle 154
262 100 Idle 150

i.MX233 Consumption Test (Battery 3.6 V)

Removed: 64MB RAM, Ethernet, Serial

i’m Droid Firmware Design:
Alsa drivers

To enable Alsa Driver you have to configure properly the Kernel

[*] SPI Sound devices!
<*> ALSA for SoC audio support!
-> <*> SoC Audio for the MXS chips!
-> <*> SoC Audio support for MXS-EVK ADC/DAC!
-> <*> MXS ADC/DAC Audio Interface!

/dev/timer!
/dev/controlC0!
/dev/pcmC0D0p!
/dev/pcmC0D0c!

cat /proc/asound/cards!
0 [EVK]: mxs adc/dac - MXS EVK!
 MXS EVK (mxs adc/dac)!
cat /proc/asound/devices!
 0: [0] : control!
16: [0- 0]: digital audio playback!
24: [0- 0]: digital audio capture!
33: : time!

obtaining the following devices

i’m Droid Firmware Design:
Set up the system for Alsa Integration

ü  Change device permission and device linking into Android init.rc

change permissions for alsa nodes!
chown root audio /dev/pcmC0D0c!
chown root audio /dev/pcmC0D0p!
chown root audio /dev/controlC0!
chown root audio /dev/timer!

chmod 0660 /dev/pcmC0D0c!
chmod 0660 /dev/pcmC0D0p!
chmod 0660 /dev/controlC0!
chmod 0660 /dev/timer!
mkdir /dev/snd!
symlink /dev/pcmC0D0c /dev/snd/pcmC0D0c!
symlink /dev/pcmC0D0p /dev/snd/pcmC0D0p!
symlink /dev/controlC0 /dev/snd/controlC0!
symlink /dev/timer /dev/snd/timer!

ü  Get alsa-lib and alsa-utils from Android Git

make BUILD_WITH_ALSA_UTILS=true BOARD_USES_ALSA_AUDIO=true!ü  Make build

&

ü  Copy the libraries and executables
/system/lib/libasound.so!
/system/bin/alsa_amixer!
/system/bin/alsa_aplay!
/system/bin/alsa_ctl!

ü  Configure properly /system/etc/asound.conf! ctl.AndroidOut {!
!type hw!
!card 0!

}!
ctl.AndroidIn {!

!type hw!
!card 0!

}!

i’m Droid Firmware Design:
Alsa Android Integration

ü  To build the system with Alsa support remember to deactivate the GENERIC_AUDIO flag

ü  Copy all the libraries and binaries in /system/…

make BUILD_WITH_ALSA_UTILS=true BOARD_USES_ALSA_AUDIO=true BOARD_USES_GENERIC AUDIO=false!

ü  Get alsa-sound (Audioflinger backend) from Android Git

•  libasound.so!
•  libaudio.so!
•  libaudioflinger.so!
•  libsystem_server.so!
•  libandroid_servers.so!
•  hw/alsa.default.so àhw/alsa.freescale.so!
•  hw/acoustics.default.so à hw/acoustics.freescale.so!

•  mediaserver!
•  system_server!

D/AudioHardwareInterface: Creating Vendor Specific AudioHardware!

ü  Verify in logcat!

ü  Ready to Play!!

i’m Droid Firmware Design:
Bootloader

Freescale Semiconductor i.MX233 BSP User’s Guide for Linux, Rev 2010.05.03 1-1

Chapter 1
Introduction

The i.MX Linux BSP is a collection of binary, code, and support files that can be used to create a
Linux kernel image and a root file system for the i.MX board.

1.1 Boot Stream

When the iMX23 comes out of reset, it begins executing the ROM. There is no alternative - no
other code is permitted to handle the reset exception. The ROM reads the boot mode pins to
discover the boot source (USB, SD/MMC, NAND Flash, etc.) and negotiates with that source in
a device-dependent way to retrieve a "boot stream." A boot stream is a stream of bytes in Safe
Boot (SB) format.

This boot stream starts with a "Load" command that instructs the ROM to copy the executable
into memory. The final "Jump" command instructs the ROM to transfer control to the executable
that it just loaded.

Another very important command is "Call." This command tells the ROM to make a function
call to a given address and then continue processing the boot stream when control returns. A
"Call" command is usually preceded by a "Load" command that copies into memory the function
to be called. Collectively, the "Load" command, the associated executable and the "Call"
command are referred to as a "bootlet".

Here's a schematic representation of a boot stream that contains two bootlets, followed by the
main executable:

L

O

A

D

Bootlet

Executable

#1

C

A

L

L

L

O

A

D

Bootlet

Executable

#2

C

A

L

L

L

O

A

D

Main Executable

J

U

M

P

Figure 1-1 i.MX23 Boot stream outline

Each bootlet is an executable that has been built separately, for a specific purpose, and may or
may not know anything about the bootlets that precede or follow it.

The boot stream can instruct the ROM to "Call" any number of executables before the final
"Jump," depending on the needs of the system. The i.MX23 Linux BSP boot streams contain the
following bootlets:

 Freescale Semiconductor i.MX23 BSP User’s Guide for Linux, Rev 2010.05.3 1-2

power_prep — This bootlet configures up the power supply.

boot_prep — This bootlet configures up the clocks and sdram.

linux_prep — This bootlet prepares to boot Linux

Here's a schematic representation of a boot stream constructed with the i.MX23 Linux BSP:

L

O

A

D

power_prep

C

A

L

L

L

O

A

D

boot_pre

p

C

A

L

L

L

O

A

D

linux_prep

C

A

L

L

L

O

A

D

zImage

J

U

M

P

Figure 1-2 An example of i.MX23 Boot stream loading Linux Kernel

Another example for U-Boot boot stream:

L

O

A

D

power_prep

C

A

L

L

L

O

A

D

boot_pre

p

C

A

L

L

L

O

A

D

U-Boot

J

U

M

P

Figure 1-3 An example of i.MX23 Boot stream loading U-Boot

For details about how to create boot stream image, please refer to “Creating Boot Stream Image”
chapter.

1.2 Flash Boot Loader

The boot stream is an important concept for imx233, which can be regarded as a boot loader.

The Linux SDK provides two boot stream images:

• Linux kernel boot stream

• U-boot boot stream

Please see “Creating Boot Stream Image” chapter for detail.

There’s no RedBoot support for imx233.

1.3 Linux Kernel and Driver

The Freescale BSP contains the Freescale Linux 2.6.28 kernel, driver source code, and a pre-built
kernel image. You can obtain the kernel image from the following location:

L2.6.31_10.05.02_ER_images_MX233/zImage

L2.6.31_10.05.02_ER_images_MX233/imx23_linux.sb

I’m watch features an eMMC on BGA, that is the system non-volatile memory. In
particular, it stores the kernel which is bundled in a boot-stream:

The ROM of i.MX233 reads the boot mode pins to discover the boot source
and negotiates the boot stream, a stream of byte in SB format.

Load executable in memory
Function call to a given address

i’m Droid Firmware Design:
Memory Optimization

A strategy to increase the amount of memory available is to compress/decompress transparently
the data. This type of approach is slower than writing directly to RAM,
(it requires the use of the CPU for comp/decomp), but it's still faster and less power consuming
 than writing to disk. CompCache puts into practice this strategy by making a swap partition that
can be mapped to RAM.

ramzswap.ko (virtual block device driver)!
rzscontrol (userspace utility to setup individual ramzswap devices)!

rzscontrol /dev/block/ramzswap0 --init!

This will initialize (default) the virtual device with a size equal to 25% of the uncompressed data.
With 64MB, the ramz device will be initialized to 16MB of uncompressed data.
(in practice one more visible application)

i’m Droid Firmware Design:
Low memory killer

ü  Android has an ad-hoc mechanism to select the
process to be closed in case of out of memory.

ü  The processes are grouped into categories and for

each there’s a "threshold” expressed in “pages”
ü  (1 page = 4KB)

ü  When the amount of free memory falls below this

threshold, the lowmemorykiller module starts to close
processes belonging to that category.

ü  Parameters tuning is very useful.

i’m Droid Firmware Design:
Low memory killer

 setprop ro.FOREGROUND_APP_ADJ 0!
 setprop ro.VISIBLE_APP_ADJ 1!
 setprop ro.SECONDARY_SERVER_ADJ 2!
 setprop ro.BACKUP_APP_ADJ 2!
 setprop ro.HOME_APP_ADJ 2!
 setprop ro.HIDDEN_APP_MIN_ADJ 7!
 setprop ro.CONTENT_PROVIDER_ADJ 14!
 setprop ro.EMPTY_APP_ADJ 15!

 setprop ro.FOREGROUND_APP_MEM 1536!
 setprop ro.VISIBLE_APP_MEM 2048!
 setprop ro.SECONDARY_SERVER_MEM 4096!
 setprop ro.BACKUP_APP_MEM 4096!
 setprop ro.HOME_APP_MEM 4096!
 setprop ro.HIDDEN_APP_MEM 5120!
 setprop ro.CONTENT_PROVIDER_MEM 5632!
 setprop ro.EMPTY_APP_MEM 6144!

Define the memory thresholds at which the
above process classes will!
be killed. These numbers are in pages (4k).!

Define the oom_adj values for the !
classes of processes that can be !
killed by the kernel.!

6 parameters Linux Kernel (low memory killer module), 8 parameters Android (Java)

i’m Droid Firmware Design:
Applications startup and memory

Estimate performance and memory (PSS) consumption [ActivityManager.getMemoryInfo()]
•  RAM, 64 MB and 128 MB
•  Screen resolution 240x240 and 640x480, 160 dpi

640x480 240x240 640x480 vs 240x240

App Start up (s) Mem (KB) Start up (s) Mem (KB) Start up (%) Mem (%)

Radiotime 2,4 6299 1,9 5197 -5,00 -17,49

Mp3 Player 1,3 4096 1,0 3518 -23,08 -14,11

Settings 1,4 4556 1,2 4534 -14,29 -16,73

News 1,9 7181 1,3 4946 -18,75 -31,12

Weather 4,9 5253 4,7 4206 -4,08 -19.93

Mail 1,3 3958 1,0 3876 -23,08 -2,07

Photos 1,1 5837 0,9 4343 -18,18 -19,56

Launcher 8103 6779 -16,34

128 MB RAM

i’m Droid Firmware Design:
Applications startup and memory

•  RAM, 64 MB and 128 MB
•  Screen resolution 240x240 and 640x480, 160 dpi

640x480 240x240 640x480 vs 240x240

App Start up (s) Mem (KB) Start up (s) Mem (KB) Start up (%) Mem (%)

Radiotime 2,0 6354 2,3 5897 -4,17 -7,19

Mp3 Player 1,2 4973 1,1 4460 -8,33 -10,32

Settings 1,7 5180 1,2 4901 -17,65 -5,39

News 1,4 7755 1,5 6898 -21,05 -11,05

Weather 6,0 6514 5,5 5814 -8,33 -10,75

Mail 1,3 5148 1,2 4823 -0,00 -6,31

Photos 1,0 5237 0,9 4642 -10,00% -11,36

Launcher 9219 9172 -0,51

64 MB RAM

Estimate performance and memory (PSS) consumption [ActivityManager.getMemoryInfo()]

i’m Droid Firmware Design:
Applications startup and memory

•  RAM 128/64 MB
•  Screen resolution 240 x 240,160 dpi

128 MB 64 MB 128 MB vs 64 MB

App Start up (s) Mem (KB) Start up (s) Mem (KB) Start up
(%)

Mem (%)

Radiotime 1,9 5197 2,3 5897 +17,39 +11,87

Mp3 Player 1,0 3518 1,1 4460 +9,09 +21,12

Settings 1,2 4534 1,2 4901 +14,28 +22,58

News 1,3 4946 1,5 6898 +13,33 +28,29

Weather 4,7 4206 5,5 5814 +14,54 +27,65

Mail 1,0 3876 1,2 4823 +16,66 +19,63

Photos 0,9 4343 0,9 4642 +0,00 +6,4

Launcher 6779 9172 +26,09

64 MB RAM

Estimate performance and memory (PSS = f[sh,pm]) consumption (procrank)

 Hypothesis:
•  More shared memory
•  Increase of shared
 Memory per process

i’m Droid Firmware Design:
Bluetooth Application Interface

ü  Bluez 4 native code back-port from Android 2.3 (external/bluetooth/)

ü  Bluez 3 (JNI and Java) removal from a Android 1.6 to avoid conflicts with

Bluez 4 integration

ü  JNI Bluez 4 back-port from Android 2.3 (frameworks/base/core/jni/

android_bluetooth_*)

ü  Java API Bluez 4 back-port from Android 2.3 (frameworks/base/core/java/

android/bluetooth/)

ü  OBEX Java code back-port from Android 2.3 (frameworks/base/obex)

ü  OPP Service and application back-port from Android 2.3 (packages/apps/

Bluetooth).

i’m Enterprise

Enterprise
Services
Infrastructure
(Data Package Build)

Tethering through Bluetooth

User

Smartphone

3G/UMTS
Connection

•  Scalability
•  Many User management
•  Backups

Third Party Services
Data Retriving

•  Facebook Notifications
•  Twitter Notifications
•  Mail Notifications
•  News
•  Weather
•  Music Providers
•  Market
•  …

User access to web platform
To manage services
and configuration

Remote Data Package Retrieve

Connectivity

http://im.com

User

Fine

Thank you…..

Meet you in the Si14’s Booth (707) to see the
i’m watch prototype.

