Software & Systems Design

Join the community defining the future

i'm watch the first Android Smartwatch

Nicola La Gloria, Ph.D.

Field Application Engineer

- Introduction
- Hardware Design
- OS firmware design
- Enterprise (quick introduction)
- Q&A

Introduction: what is

Ο

"The ultimate way to connect to your mobile device"...

Features:

Android based OS \bigcirc

- It's a Bluetooth **handset** device (HFP, PBAP) Ο
- Features **Apps** as any smartphone
- Plays multimedia contents Ο
- Appealing design and quality of manufacture
- **User** Apps through SDK.

Introduction: Challenges

- o Low Memory, 64MB RAM for System and Applications
- Reduced battery consumption
- Reduced space for components placement
- Curved capacitive touch technology
- o Bluetooth integration for handset features
- MIPI display technology integration
- Applications GUI design and Accessibility
- o Bluetooth tethering (internet connection)

Internet Connection

ARM

- i.Mx233 @ 450MHz CPU Jack Stereo Audio Out
- 64MB LPDDR (MT46H32M16LFBF-6L_:C) USB OTG
- Bluetooth
- Microphone
- Speaker
- 4 GB eMMC

- 450mAh Battery
- 1.54" 240x240 Display (MIPI)
- Curve Capacitive Touch screen
- One stand-by button

Hardware Design: Components placement

Assembly Bottom

ARM

Assembly Top

Hardware Design: Dimensions

R102.30

0

AKM

ARM[®] 2011 TechCon™

Join the community defining the future

Hardware Design: Dimensions

Join the community defining the future

ARM

Hardware Design: Mechanical

Join the community defining the future

Rendering

Join the community defining the future

The Operating System

Join the community defining the future

is the i'm watch customized Android OS

- ✓ Donut 1.6 (lower memory requirement)
- ✓ Bug fixes
- ✓ Back-ports from Gingerbread and Froyo
- ✓ Custom native code
- ✓ Expose native methods to APIs (through JNI)

i'm Droid Firmware Design: the kernel

An official Android Kernel for FSL i.MX233 was not available.

Android manual kernel porting for i.MX28:

- ✓ Official Android Kernel 2.6.35
- ✓ FSL patches for generic Linux i.IMX platform (including i.MX233 patches)
- ✓ Manual conflict resolution

Most efficient:

- ✓ "Git merge" between Android Kernel 2.6.35 and FSL i.MX Kernel 2.6.35
- ✓ Time effective, less conflicts
- ✓ No manual patches
- ✓ Full kernel history and easy update management

i'm Droid Firmware Design: **CPU** scaling and standby

Join the community defining the future

Due to strict energy saving policy, the system has to be scalable in terms of CPU speed.

- 262 MHz
- o 360 MHz
- 390 MHz
- 454 MHz

To limit battery consumption the user-space Kernel Frequency CPU Governor is used:

- CPU Governor Conservative
- CPU Governor OnDemand

They scale the CPU frequencies according to the needs. OnDemand governor switches to governor increases/decrease frequency immediately, while the *Conservative* step by step.

i'm Droid Firmware Design: Preliminary Power Consumption Tests

Join the community defining the future

Consumption tests have been done to evaluate the energy saving in the i.MX233 EVK on different set-up:

- Removing/deactivating components
 (Ethernet, Serial, Memory, USB)
- Varying the CPU Frequency
- Varying the Display Backlight
- Standby/Idle states

As detailed in the specifications of i.MX233 processor, FSL Linux BSP does not support suspend-to-RAM mode. To send properly in low power mode when the screen timeout expires, Android has been forced to call the **standby** mode instead of the suspend-to-RAM.

- TSlib is an abstraction layer for touchscreen panel events, as well as a filter stack for the manipulation of those events.
- ✓ It was created by Russell King, of arm.linux.org.uk
- ✓ TSlib is generally used on embedded devices to provide a common user-space interface to touchscreen functionality

To calibrate the touchscreen the TSlib calibration suite has been integrated into Android. They include:

- Porting TSlib for Android (binary build);
- Android's framework integration;
- Application for calibration (TSCalibration for testing).

i'm Droid Firmware Design: Preliminary Consumption Tests

Join the community defining the future

i.MX233 Consumption Test (Battery 3.6 V)

CPU MHz	Backlight	Status	mA
all	0	Standby	25
454	50	Idle	116
454	100	Idle	164
392	100	Idle	157
392	0	Idle	93
360	100	Idle	154
262	100	Idle	150

Removed: 64MB RAM, Ethernet, Serial

i'm Droid Firmware Design: Alsa drivers

Join the community defining the future

To enable Alsa Driver you have to configure properly the Kernel

[*] SPI Sound devices <*> ALSA for SoC audio support -> <*> SoC Audio for the MXS chips -> <*> SoC Audio support for MXS-EVK ADC/DAC -> <*> MXS ADC/DAC Audio Interface

obtaining the following devices

/dev/timer /dev/controlC0 /dev/pcmC0D0p /dev/pcmC0D0c

i'm Droid Firmware Design: Set up the system for Alsa Integration

Join the community defining the future

✓ Change device permission and device linking into Android init.rc

change permissions for alsa nodes chown root audio /dev/pcmC0D0c chown root audio /dev/pcmC0D0p chown root audio /dev/controlC0 chown root audio /dev/timer

- chmod 0660 /dev/pcmC0D0c
 chmod 0660 /dev/pcmC0D0p
 chmod 0660 /dev/controlC0
 chmod 0660 /dev/timer
 mkdir /dev/snd
 symlink /dev/pcmC0D0c /dev/snd/pcmC0D0c
 symlink /dev/pcmC0D0p /dev/snd/pcmC0D0p
 symlink /dev/controlC0 /dev/snd/controlC0
 symlink /dev/timer /dev/snd/timer
- ✓ Get alsa-lib and alsa-utils from Android Git

Rľ	1					Electronics
				<pre>} ctl.AndroidIn { </pre>	type hw card 0	
\checkmark	Configure prope	rly/system/etc/	'asound.conf	ctl.AndroidOut	{ type hw card 0	
\checkmark	Copy the librarie	s and executables	/system/lib/libas /system/bin/alsa /system/bin/alsa /system/bin/alsa	sound.so _amixer _aplay _ctl		
\checkmark	Make build	make BUILD_WITH_ALS	A_UTILS=true BOARD	USES_ALSA_A	UDIO=true	

i'm Droid Firmware Design: Alsa Android Integration

Join the community defining the future

- ✓ Get *alsa-sound* (Audioflinger backend) from Android Git
- To build the system with Alsa support remember to deactivate the GENERIC_AUDIO flag make BUILD_WITH_ALSA_UTILS=true BOARD_USES_ALSA_AUDIO=true BOARD_USES_GENERIC AUDIO=false
- ✓ Copy all the libraries and binaries in /system/...
 - libasound.so
 - libaudio.so

2011

- libaudioflinger.so
- libsystem_server.so
- libandroid_servers.so
- hw/alsa.default.so \rightarrow hw/alsa.freescale.so
- hw/acoustics.default.so \rightarrow hw/acoustics.freescale.so
- mediaserver
- system_server

✓ Verify in logcat

D/AudioHardwareInterface: Creating Vendor Specific AudioHardware

Ready to Play!

The ROM of i.MX233 reads the boot mode pins to discover the boot source and negotiates the *boot stream*, a stream of byte in SB format.

I'm watch features an eMMC on BGA, that is the system non-volatile memory. In particular, it stores the kernel which is bundled in a boot-stream:

L O			boot pre	C A	L O		C A	L O		J บ		
A	power_prep	LZ	p	p L	р ЦА	А	$ \text{linux_prep} _{\mathbf{L}} _{\mathbf{A}} $ zIma		A	zImage	М	
D	1	L)	L	D		:	L	L	D		Ρ

i'm Droid Firmware Design: **Memory Optimization**

Join the community defining the future

A strategy to increase the amount of memory available is to compress/decompress transparently the data. This type of approach is slower than writing directly to RAM,

(it requires the use of the CPU for comp/decomp), but it's still faster and less power consuming than writing to disk. **CompCache** puts into practice this strategy by making a swap partition that can be mapped to RAM.


```
rzscontrol /dev/block/ramzswap0 --init
```

This will initialize (default) the virtual device with a size equal to **25%** of the uncompressed data. With 64MB, the *ramz* device will be initialized to 16MB of uncompressed data. (in practice one more visible application)

rzscontrol

- ✓ Android has an ad-hoc mechanism to select the process to be closed in case of out of memory.
- ✓ The processes are grouped into categories and for each there's a "threshold" expressed in "pages"
- ✓ (1 page = 4KB)
- ✓ When the amount of free memory falls below this threshold, the *lowmemorykiller* module starts to close processes belonging to that category.
- ✓ Parameters tuning is very useful.

Join the community defining the future

Define the oom_adj values for the # classes of processes that can be # killed by the kernel.

setprop ro.FOREGROUND_APP_ADJ 0
setprop ro.VISIBLE_APP_ADJ 1
setprop ro.SECONDARY_SERVER_ADJ 2
setprop ro.BACKUP_APP_ADJ 2
setprop ro.HOME_APP_ADJ 2
setprop ro.HIDDEN_APP_MIN_ADJ 7
setprop ro.CONTENT_PROVIDER_ADJ 14
setprop ro.EMPTY_APP_ADJ 15

Define the memory thresholds at which the # above process classes will # be killed. These numbers are in pages (4k).

Electronics

setprop ro.FOREGROUND_APP_MEM 1536
setprop ro.VISIBLE_APP_MEM 2048
setprop ro.SECONDARY_SERVER_MEM 4096
setprop ro.BACKUP_APP_MEM 4096
setprop ro.HIDDEN_APP_MEM 4096
setprop ro.HIDDEN_APP_MEM 5120
setprop ro.CONTENT_PROVIDER_MEM 5632
setprop ro.EMPTY_APP_MEM 6144

6 parameters Linux Kernel (low memory killer module), 8 parameters Android (Java)

i'm Droid Firmware Design: Applications startup and memory

Join the community defining the future

2011

Estimate performance and memory (PSS) consumption [ActivityManager.getMemoryInfo()]

• RAM, 64 MB and 128 MB

lechCon™

Screen resolution 240x240 and 640x480, 160 dpi

	640>	(480	240x	240	640x480 v	s 240x240
Арр	Start up (s)	Mem (KB)	Start up (s)	Mem (KB)	Start up (%)	Mem (%)
Radiotime	2,4	6299	1,9	5197	-5,00	-17,49
Mp3 Player	1,3	4096	1,0	3518	-23,08	-14,11
Settings	1,4	4556	1,2	4534	-14,29	-16,73
News	1,9	7181	1,3	4946	-18,75	-31,12
Weather	4,9	5253	4,7	4206	-4,08	-19.93
Mail	1,3	3958	1,0	3876	-23,08	-2,07
Photos	1,1	5837	0,9	4343	-18,18	-19,56
Launcher		8103		6779		-16,34
A `		128 M	B RAM			

i'm Droid Firmware Design: Applications startup and memory

Join the community defining the future

2011

Estimate performance and memory (PSS) consumption [ActivityManager.getMemoryInfo()]

• RAM, 64 MB and 128 MB

lechCon™

Screen resolution 240x240 and 640x480, 160 dpi

	640>	(480	240x	240	640x480 v	s 240x240
Арр	Start up (s)	Mem (KB)	Start up (s)	Mem (KB)	Start up (%)	Mem (%)
Radiotime	2,0	6354	2,3	5897	-4,17	-7,19
Mp3 Player	1,2	4973	1,1	4460	-8,33	-10,32
Settings	1,7	5180	1,2	4901	-17,65	-5,39
News	1,4	7755	1,5	6898	-21,05	-11,05
Weather	6,0	6514	5,5	5814	-8,33	-10,75
Mail	1,3	5148	1,2	4823	-0,00	-6,31
Photos	1,0	5237	0,9	4642	-10,00%	-11,36
Launcher		9219		9172		-0,51
A '		64 MB	RAM			

i'm Droid Firmware Design: Applications startup and memory

Electronics

Join the community defining the future

TechCon™

2011

Estimate performance and memory (PSS = f[sh,pm]) consumption (procrank)

- RAM 128/64 MB
- Screen resolution 240 x 240,160 dpi

	128 MB		64	MB	128 MB		
Арр	Start up (s)	Mem (KB)	Start up (s)	Mem (KB)	Start up (%)	Mem (%)	
Radiotime	1,9	5197	2,3	5897	+17,39	+11,87	
Mp3 Player	1,0	3518	1,1	4460	+9,09	+21,12	
Settings	1,2	4534	1,2	4901	+14,28	+22,58	↓ Hypothesis:
News	1,3	4946	1,5	6898	+13,33	+28,29	 More shared Increase of s
Weather	4,7	4206	5,5	5814	+14,54	+27,65	Memory per
Mail	1,0	3876	1,2	4823	+16,66	+19,63	
Photos	0,9	4343	0,9	4642	+0,00	+6,4	
Launcher		6779		9172		+26,09	
			64 MB RA	٩M			' [

i'm Droid Firmware Design: Bluetooth Application Interface

- ✓ Bluez 4 native code back-port from Android 2.3 (external/bluetooth/)
- ✓ Bluez 3 (JNI and Java) removal from a Android 1.6 to avoid conflicts with Bluez 4 integration
- ✓ JNI Bluez 4 back-port from Android 2.3 (frameworks/base/core/jni/ android_bluetooth_*)
- ✓ Java API Bluez 4 back-port from Android 2.3 (frameworks/base/core/java/ android/bluetooth/)
- ✓ OBEX Java code back-port from Android 2.3 (frameworks/base/obex)
- OPP Service and application back-port from Android 2.3 (packages/apps/ Bluetooth).

i'm Enterprise

Thank you.....

Meet you in the Si14's Booth (707) to see the i'm watch prototype.

